Mathematics Formula Sheets

3 Points

New Program

Statistics and Probability

 $f_1, f_2, \ldots, f_n \text{ are the frequencies of } x_1, x_2, \ldots, x_n \text{ respectively, and } N = f_1 + f_2 + \ldots + f_n \text{ .}$

Average: $\overline{\mathbf{x}} = \frac{\mathbf{x}_1 \mathbf{f}_1 + \mathbf{x}_2 \mathbf{f}_2 + \dots + \mathbf{x}_n \mathbf{f}_n}{N}$ Standard deviation: $S = \sqrt{\frac{(\mathbf{x}_1 - \overline{\mathbf{x}})^2 \cdot \mathbf{f}_1 + (\mathbf{x}_2 - \overline{\mathbf{x}})^2 \cdot \mathbf{f}_2 + \dots + (\mathbf{x}_n - \overline{\mathbf{x}})^2 \cdot \mathbf{f}_n}{N}}$

Probability:

Probability of A and B, where A and B are independent events: $P(A \cap B) = P(A) \cdot P(B)$ Probability of the complementary event to Event A: $P(\overline{A}) = 1 - P(A)$

Geometry and Trigonometry

Plane shapes:

Area of a triangle:	$S = \frac{\text{side} \cdot \text{height to }}{2}$	that side
Area of a triangle:	$S = \frac{1}{2} \cdot b \cdot c \cdot \sin \alpha$	$(\alpha - angle between the sides b and c)$
Area of a parallelogram:	$S = a \cdot h$	(a - side, h - height to the side a)
Area of a trapezoid:	$S = \frac{(a+b) \cdot h}{2}$	(a, b – bases of the trapezoid, h – height)
Area of a quadrilateral with perpendicular diagonals:	$S = \frac{d_1 \cdot d_2}{2}$	$(d_1, d_2 - diagonals of the quadrilateral)$
Area of a circle:	$S = \pi \cdot R^2$	(R – radius of the circle)
Circumference of a circle:	$\mathbf{P} = 2 \boldsymbol{\cdot} \boldsymbol{\pi} \boldsymbol{\cdot} \mathbf{R}$	(R – radius of the circle)

Properties of polygons:

Parallelogram:	The diagonals bisect.
Rectangle:	The diagonals bisect and are equal to each other.
Rhombus:	The diagonals bisect and are perpendicular to each other. The diagonals are angle bisectors.
Square:	The diagonals bisect, are equal, and are perpendicular to each other. The diagonals are angle bisectors.
Isosceles trapezoid:	Angles adjacent to the same base are equal to each other, and the diagonals are equal to each other.

Track distance, assuming constant speed:

time \cdot speed = distance

Trigonometric functions in a right triangle:

Pythagoras' theorem: $a^2 + b^2 = c^2$

Spatial geometry:

Object	Figure	Lateral Surface Area (M)	Surface Area (F)	Volume (V)
Rectangular cuboid a and b – edges of the base h – height of the cuboid	h a b	M – sum of the areas of the lateral faces $M = 2(a \cdot h + b \cdot h)$	$F = M + 2 \cdot a \cdot b$ $F = 2(a \cdot b + b \cdot h + a \cdot h)$	$\mathbf{V} = \mathbf{a} \boldsymbol{\cdot} \mathbf{b} \boldsymbol{\cdot} \mathbf{h}$
<u>Cube</u> a – length of the cube's edge	a	M – sum of the areas of the lateral faces $M = 4 \cdot a^2$	$F = 6 \cdot a^2$	$V = a^3$
Right prism with a triangular base P – perimeter of the base S – area of the base h – height of the prism	h	M – sum of the areas of the lateral faces $M = h \cdot P$	$\mathbf{F} = \mathbf{M} + 2 \cdot \mathbf{S}$	$V = S \cdot h$
Right pyramid with a rectangular base S – area of the base h – height of the pyramid	h	M – sum of the areas of the lateral faces	F = M + S	$V = \frac{S \cdot h}{3}$
Right pyramid with a triangular base S – area of the base h – height of the pyramid		M – sum of the areas of the lateral faces	F = M + S	$V = \frac{S \cdot h}{3}$
Non-right pyramid with a triangular base and one lateral edge perpendicular to the base S – area of the base h – height of the pyramid	h	M – sum of the areas of the lateral faces	F = M + S	$V = \frac{S \cdot h}{3}$

- 3 - <u>נוסחאון מתמטיקה, 3 יחידות לימוד – תוכנית חדשה</u> Mathematics formula sheet, 3 points – New Program

Object	Figure	Lateral Surface Area (M)	Surface Area (F)	Volume (V)
Non-right pyramid with a rectangular base and one lateral edge perpendicular to the base S – area of the base h – height of the pyramid	h	M – sum of the areas of the lateral faces	F = M + S	$V = \frac{S \cdot h}{3}$
Right cylinder R – radius of the base h – height of the cylinder	h R	$\mathbf{M} = 2 \boldsymbol{\cdot} \boldsymbol{\pi} \boldsymbol{\cdot} \mathbf{R} \boldsymbol{\cdot} \mathbf{h}$	$\mathbf{F} = \mathbf{M} + 2 \boldsymbol{\cdot} \boldsymbol{\pi} \boldsymbol{\cdot} \mathbf{R}^2$	$\mathbf{V} = \pi \cdot \mathbf{R}^2 \cdot \mathbf{h}$
Right cone R – radius of the base ℓ – generatrix (slant height) h – height of the cone	h l	$\mathbf{M} = \pi \cdot \mathbf{R} \cdot \boldsymbol{\ell}$	$\mathbf{F} = \mathbf{M} + \pi \cdot \mathbf{R}^2$	$V = \frac{\pi \cdot R^2 \cdot h}{3}$
Sphere R – radius of the sphere	R		$\mathbf{F} = 4 \cdot \pi \cdot \mathbf{R}^2$	$\mathbf{V} = \frac{4}{3} \cdot \pi \cdot \mathbf{R}^3$

<u>Algebra</u>

Quadratic equation:	$ax^2 + bx + c = 0$ (a $\neq 0$)	Roots: $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
Quadratic function:	$y = ax^2 + bx + c (a \neq 0)$	Value of x-coordinate of the parabola vertex:	$x = \frac{-b}{2a}$

Growth and decay:

 $A_{t} = A_{0} \cdot q^{t} \qquad (q - \text{growth/decay coefficient per unit of time, t - duration})$ $q = \frac{100 \pm p}{100} \qquad (p - \text{percentage growth/decay per unit of time})$

Exponents: $a^{-n} = \frac{1}{a^n}$ ($a \neq 0$, n is a natural number)

Analytical Geometry

The slope m of a line that passes through the points (x_1, y_1) and (x_2, y_2) and is not perpendicular to the x-axis:

The equation of a line of slope m that passes through the point (x_1, y_1) :

The coordinates of the midpoint of a segment whose endpoints are $A(x_1, y_1)$ and $B(x_2, y_2)$:

The distance d between the points $A(x_1, y_1)$ and $B(x_2, y_2)$:

The lines $y = m_1 x + b_1$ and $y = m_2 x + b_2$ are perpendicular to each other if and only if: $m_1 \cdot m_2 = -1$

The lines $y = m_1 x + b_1$ and $y = m_2 x + b_2$ are parallel to each other if and only if: $m_1 = m_2$ $(b_1 \neq b_2)$

 $m = \frac{y_2 - y_1}{x_2 - x_1}$

 $y - y_1 = m(x - x_1)$

 $x = \frac{x_1 + x_2}{2}$, $y = \frac{y_1 + y_2}{2}$

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Normal Distribution

Normal distribution curve:

Standard score z of value x : $z = \frac{x - \overline{x}}{S}$ (\overline{x} – average, S – standard deviation)