Evolution of War, Evolution of Science – In search for an antidote for nerve agent poisoning

Abstract

The dark side of human progress is it's ability to develop and perfect killing methods. During the 20th century there was an acceleration in the development of chemical and biological weapons. For example, the Iran-Iraq war demonstrated the dangers of nerve agent poisoning. The fear from exposure to organophosphorus compounds made us search for a good protection from nerve agent poisoning.

Background

Nerve agents are organophosphorus compounds which were discovered in 1937. The symptoms of nerve agent poisoning are:

- Intensified saliva production
- Convulsions
- Death by Asphyxia

PON1 is an enzyme that can be considered as an effective cure for nerve agent poisoning because it accelerates the hydrolysis of organophosphorus compounds. Human PON1 can be produced in small quantities, but it tends to sink as nonsoluble clusters because of it's hydrophobic traits. That's why we made better versions of human PON1 using the Directed Evolution technique.

bjectives

The aim of the project was to check the potential of PON1 as a cure for nerve agent poisoning. My research question was:

How would the concentration of the competitive inhibitor 2HQ* affect the activity of the enzyme PON1 in the W.T mutation

The purpose of my research was to check the mutation's resistance to enzyme inhibitors.

*2HQ = 2 HydroxyQuinoline

Arthur Zverko ; Biotech Project ; Weizmann Institute of Science ; Israel

Methods

- Transformation of the recombinant plasmid into E.Coli bacteria
- Inoculate the bacteria on culture medium that contains antibiotics (AMP) to get transgenic bacteria.
- Growth of bacteria until the mid of the log phase.
- Addition of IPTG to induce creation of PON1 under the control of lac operon.
- Explosion of the bacteria in order to get a mixture of cell parts and different molecules.
- Centrifugalization in order to get a soluble material that contains PON1 (and other molecules).
- Using affinity chromatography to separate PON1 from other molecules (contains nickel beads that have affinity to the Histidine ring in PON1).
- Checking the absorbance of PON1 in a spectrophotometer using the Bradford Assay in order to calculate the enzyme's concentration.
- Determining the activity of PON1 by testing the absorbance of the enzymatic product PNP as a function of time in the presence of varied concentrations of 2HQ. We use the ELISA machine.

Results

Absorb	Absorb							
ance of	ance of	Absorb	Absorb	Absorb	Absorb	Absorb		
PNP in	PNP in	ance of	ance of	ance of	ance of	ance of	Absorba	
presen	presen	PNP in	PNP in	PNP in	PNP in	PNP in	nce of	
ce of	ce of	presen	presen	presen	presen	presen	PNP in	
inhibito	inhibito	ce of	ce of	ce of	ce of	ce of	presenc	
r	r	inhibito	inhibito	inhibito	inhibito	inhibito	e of	
concen	concen	r	r	r	r	r	inhibitor	
tration	tration							T:
แลนบท	tration	concen	concen	concen	concen	concen	concent	IIme
200	100	tration	tration	tration	tration	tration	ration	(secon
200 uM	100 uM	tration 50 uM	tration 25 uM	tration 10 uM	tration 5 uM	tration 2.5 uM	ration 0 uM	(secon ds)
200 uM 3420	100 uM 3430	tration 50 uM 3380	tration 25 uM 3390	tration 10 uM 3330	tration 5 uM 3290	tration 2.5 uM 3310	ration 0 uM 3240	(secon ds) 5
200 uM 3420 3360	100 uM 3430 3380	tration 50 uM 3330	tration 25 uM 3390	tration 10 uM 3330	concen tration 5 uM 3290 3230	tration 2.5 uM 3310	concent ration 0 uM 3240 3180	(secon ds) 5 10
200 uM 3420 3360 3370	100 uM 3430 3380	tration 50 uM 3380 3330	concent tration 25 uM 3390 3340	Concen tration 10 uM 33300 3290 3320	Concen tration 5 uM 3290 3230	Concent tration 2.5 uM 3310 3260	ration 0 uM 3240 3180 3200	11me (secon ds) 5 10 15
200 uM 3420 3360 3370 3310	100 100 uM 3430 3380 3400 3350	tration 50 uM 3380 33300 33300 3280	concent tration 25 uM 3390 3340 3340 3300	concent tration 10 uM 3330 3290 3320 3280	concent tration 5 uM 3290 3230 3250 3190	tration tration 2.5 uM 3310 3260 3210	ration 0 uM 3240 3180 3200 3160	11me (secon ds) 5 10 15 20

Results
 Series1 Series2 Series3 Series4 Series5 Series6 Series7 Absorbance PNP (o.t. Linear (Series1) Linear (Series2) Linear (Series3) Linear (Series5) Linear (Series5) Linear (Series7) Linear (Series8)
Enzymatic re reaction ra

Conclusions

From the graph "Enzymatic reaction rate in relation to the reaction rate without the inhibitor" we can see that PON1 in the W.T variant is very much affected by enzyme inhibitors.

As for the future of the research, I recommend:

- faster)

Overall, PON1 is a very promising candidate for an effective cure against nerve agent poisoning.

Concentration of 2HQ (µM)

Finding new mutations that are not affected at all from enzyme inhibitors

Develop PON1 so that it could hydrolyze many kinds of nerve agents

Find mutations that have a higher enzyme activity (so that it could cure poisoning