Государство Израиль Министерство просвещения

Тип экзамена:

а. на аттестат зрелости для средних школ б. на аттестат зрелости для экстернов Время проведения экзамена: лето 2007 года Номер вопросника: 035004, 304 Приложение: листы с формулами для уровня в 4 и 5 единиц обучения

Математика

Вопросник "Далет"

Указания экзаменующимся

- а. Продолжительность экзамена: 1 час 45 минут.
- б. Строение вопросника и ключ к оценке:
 В этом вопроснике два раздела.

Раздел первый: тригонометрия на плоскости и в пространстве, дифференциальное и интегральное исчисление тригонометрических функций — $\left(1\times33\frac{1}{2}\right) \quad - \quad 33\frac{1}{3} \text{ баллов}$

Раздел второй: степени и логарифмы,

дифференциальное и интегральное исчисление —

 $(2 \times 33\frac{1}{3})$ – $66\frac{2}{3}$ баллов Всего – 100 баллов

- в. Разрешенный вспомогательный материал:
 - 1. Калькулятор без графического дисплея. При работе с калькулятором, который предоставляет возможности программирования, запрещается использовать эти возможности. Использование калькулятора с графическим дисплеем или возможностей программирования может привести к тому, что экзамен будет аннулирован.
 - 2. Листы с формулами (прилагаются).
- г. Особые указания:
 - 1. Не переписывайте вопрос; обозначьте только его номер.
 - 2. Начинайте ответ на каждый вопрос с новой страницы. Запишите в тетради этапы решения (также и в том случае, когда вычисления производились с помощью калькулятора). Объясните все свои действия, включая вычисления, подробно, в ясной и упорядоченной форме. Недостаточно подробная запись решения может привести к тому, что оценка за экзамен будет снижена или экзамен будет аннулирован.
 - 3. Для черновых записей следует использовать только экзаменационную тетрадь или листы, полученные от экзаменаторов. Пользование другими черновиками может привести к тому, что экзамен будет аннулирован.

Желаем успеха!

/продолжение на следующей странице/

מדינת ישראל משרד החינוך

סוג הבחינה:

א. בגרות לבתי ספר על-יסודיים ב. בגרות לנבחנים אקסטרניים מועד הבחינה: קיץ תשס"ז, 2007 מספר השאלון: 035004, 304 נספח: דפי נוסחאות

ל-4 ול-5 יחידות לימוד

מתמטיקה

שאלון די

הוראות לנבחן

- א. משך הבחינה: שעה ושלושה רבעים.
- ב. $\frac{1}{2}$ ב. $\frac{1}{2}$ ב. $\frac{1}{2}$ ב. $\frac{1}{2}$ באלון זה שני פרקים. $\frac{1}{2}$ באלון זה שני פרקים. $\frac{1}{2}$ ברק ראשון: טריגונומטריה במישור $\frac{1}{2}$ במרחב, חשבון דיפרנציאלי ואינטגרלי $\frac{1}{2}$ במונקציות הטריגונומטריות $\frac{1}{2}$ במונקציות ולוגריתמים, חשבון $\frac{1}{2}$ ביפרנציאלי ואינטגרלי $\frac{1}{2}$ ביפרנציאלי ואינטגרלי $\frac{1}{2}$ במונקציאלי ואינטגרלי $\frac{1}{2}$ במונקציאלי ואינטגרלי $\frac{1}{2}$ במונקציאלי ואינטגרלי $\frac{1}{2}$ במונקציאלי ואינטגרלי $\frac{1}{2}$ במונך $\frac{1}{2}$
 - ג. חומר עזר מותר בשימוש:
 - מחשבון לא גרפי. אין להשתמש באפשרויות התכנות במחשבון הניתן לתכנות. שימוש במחשבון גרפי או באפשרויות התכנות במחשבון עלול לגרום לפסילת הבחינה.
 - 2. דפי נוסחאות (מצורפים).
 - ד. הוראות מיוחדות:
 - 1. אל תעתיק את השאלה; סמן את מספרה בלבד.
- התחל כל שאלה בעמוד חדש.
 רשום במחברת את שלבי הפתרון,
 גם כאשר החישובים מתבצעים
 בעזרת מחשבון. הסבר את <u>כל</u>
 פעולותיך, כולל חישובים, בפירוט
 ובצורה ברורה ומסודרת.
 חוסר פירוט עלול לגרום לפגיעה
 בציון או לפסילת הבחינה.
 - לטיוטה יש להשתמש במחברת הבחינה או בדפים שקיבלת מהמשגיחים. שימוש בטיוטה אחרת עלול לגרום לפסילת הבחינה.

בהצלחה!

/המשד מעבר לדף/

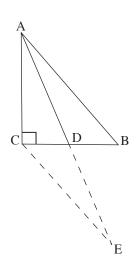
Вопросы

Обратите внимание! Объясняйте <u>все</u> Ваши действия, включая вычисления, подробным и ясным образом. Недостаточная детализация может снизить Вашу оценку или привести к аннулированию экзамена.

Раздел первый

ТРИГОНОМЕТРИЯ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ, ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

 $(33\frac{1}{3}$ балла)


Ответьте на один из вопросов 1-2.

Обратите внимание! Если Вы ответите более чем на один вопрос, будет проверен только первый из ответов в Вашей тетради.

1. В прямоугольном треугольнике ABC (\checkmark C = 90°) AD — медиана к катету BC (см. чертеж). Дано: \checkmark ABC = 73°, BC = 2a.

- (x) Вычислите величину угла ADC.
- (2) E точка на продолжении медианы AD, выбранная таким образом, что CE = 10 см, a DE = 8 см. Вычислите длину катета BC.

Дайте ответы с точностью до двух цифр после десятичного знака [נקודה עשרונית].

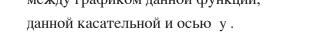
2. Дана производная функции f(x) $f'(x) = 3 - b \sin 3x$. Провели касательную к графику функции f(x) в точке, в которой $x = \frac{\pi}{6}$.

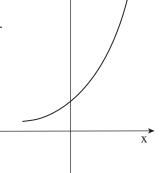
Уравнение касательной $y = -3x + 2\pi$.

- (א) Найдите значение параметра в.
- (\Box) Найдите функцию f(x) .
- (x) Найдите координаты x точек экстремума функции f(x) в области $0 < x < \frac{\pi}{2}$ и установите их тип.

/продолжение на странице 3/

Раздел второй <u>СТЕПЕНИ И ЛОГАРИФМЫ,</u> ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ (66²/₃ балла)


Ответьте на <u>два</u> из вопросов 3-5 (за каждый вопрос $-33\frac{1}{3}$ балла). **Обратите внимание!** Если Вы ответите более чем на два вопроса, будут проверены только первые два из ответов в Вашей тетради.


- 3. 1/1/1990 человек купил участок земли, предназначенный для строительства. До 1/1/1994 стоимость этого участка уменьшалась каждый год на постоянный процент. В целом, за первые 4 года со дня покупки стоимость участка уменьшилась на 40%.
 - (א) Найдите постоянный процент, на который уменьшалась стоимость участка каждый год.
 - (д) 1/1/1994 был утвержден план строительства в этом районе. После утверждения плана стоимость участка каждый год увеличивалась на процент, в 1.5 раза больший, чем процент, на которой его стоимость уменьшалась каждый год до этого. Найдите, через сколько лет, прошедших после 1/1/1994, стоимость участка будет на 40% больше его стоимости в день покупки.

Дайте ответы с точностью до двух цифр после десятичного знака [נקודה עשרונית].

- 4. Дана функция $f(x) = (\log_2 x)^2 \log_4 x^2$.
 - (א) Какова область определения данной функции?
 - (2) Найдите точки пересечения графика данной функции с осью х.
 - (a) Найдите уравнение прямой, касательной к графику данной функции в точке, в которой $x = \sqrt{2}$.

- Дана функция $f(x) = \frac{x+1}{2}$ (смотрите чертеж). Угловой коэффициент прямой, касательной к графику данной функции в точке A , равен $\frac{e^2}{2}$.
 - (א) Найдите координаты точки А.
 - (ב) Найдите уравнение касательной к графику функции в точке А.
 - (а) Вычислите площадь фигуры, заключенной между графиком данной функции,

У

В своих ответах Вы можете оставить число е.

Желаем успеха!

נוסחאון מתמטיקה

5-4 יחידות לימוד (חחל מקיץ תש"ן)

אלגברת

$$a^{n} - b^{n} = (a-b) (a^{n-1} + a^{n-2}b + ... + a^{n-3}b^{2} + ... + b^{n-1})$$

$$(a+b)^{n} = a^{n} + {n \choose 1} a^{n-1} \cdot b + ... + {n \choose k} a^{n-k} \cdot b^{k} + ... + b^{n}$$

פירוק לגורמים

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

$$x_1 + x_2 = -\frac{b}{a} \qquad \qquad x_1 \cdot x_2 = \frac{c}{a}$$

$$x_1 \cdot x_2 = \frac{c}{a}$$

נוסחאות וייטה

(
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 . שורשי משוואה ריבועית x_1, x_2)

סדרות

סדרה הנדסית	סדרה חשבונית	
$a_n = a_1 q^{n-1}$	$a_n = a_1 + (n - 1) d$: האיבר ה n-י
$S = \frac{a_1 (q^n - 1)}{a_1 (q^n - 1)}$	$S = \begin{bmatrix} n & (n-1) & d \end{bmatrix}$	
q-1	$S_n = \frac{n}{2} [2a_1 + (n-1) d]$	הסכום:

$$z = a + bi = r (\cos\theta + i \sin\theta)$$

מספרים מרוכבים

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$$

מכפלה בחצגה קוטבית:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

משפט דה־מואבר:

$$z_k = \sqrt[n]{r} \left[\cos \left(\frac{\alpha}{n} + \frac{2\pi k}{n} \right) + i \sin \left(\frac{\alpha}{n} + \frac{2\pi k}{n} \right) \right]$$
 הם: $z^n = r \left(\cos \alpha + i \sin \alpha \right)$ שורשי המשוואה

$$k = 0,1, \ldots, n - 1$$

קומבינטוריקה

$$p_n = n!$$

מספר התמורות של n עצמים (בלי חזרות):

מספר התמורות של n_1, n_2, \dots, n_k עצמים כשמתוכם עמים תווים ביניהם:

$$p_n = \frac{n!}{n_1! \cdot n_2! \dots \cdot n_k!}$$

$$A_n^k = \frac{n!}{(n-k)!}$$

מספר החליפות של k מתוך n עצמים (בלי חזרות):

$$\binom{n}{k} = C_n^k = \frac{n!}{k! (n-k)!}$$

מספר הצירופים של k מתוך n עצמים (בלי חזרות):

וקטורים

<u>זהויות</u>

$$\underline{x} = \underline{a} + t \ (\underline{b} - \underline{a}) + s(\underline{c} - \underline{a})$$
 : $\underline{c} = \overrightarrow{OC}$, $\underline{b} = \overrightarrow{OB}$, $\underline{a} = \overrightarrow{OA}$ מישור דרך קצות הווקטורים (\underline{x} , \underline{y}) = \underline{x} : $\underline{y} = x_1 y_1 + x_2 y_2 + x_3 y_3 = |\underline{x}| \cdot |\underline{y}| \cdot \cos \alpha$

$$\underline{x}$$
, $\underline{y} = \underline{x} \cdot \underline{y} = x_1 y_1 + x_2 y_2 + x_3 y_3 = |\underline{x}| \cdot \underline{y}| \cdot \cos x$

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$$
 ניצבות:
 $|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\mathbf{x}_1^2 + \mathbf{x}_2^2 + \mathbf{x}_3^2}$: אורך של וקטור

$$\frac{|\underline{a} \cdot \underline{z} + c|}{|\underline{a}|}$$
 : $\underline{a} \cdot \underline{x} + c = 0$ מרחק בין $\underline{z} = (z_1, z_2, z_3)$

$$\sin \beta = \frac{|\underline{a} \cdot \underline{b}|}{|\underline{a}| \cdot |\underline{b}|}$$
 : $\underline{a} \cdot \underline{x} + c = 0$ למישור למישור

$$\cos \alpha = \frac{|\underline{a} \cdot \underline{b}|}{|\underline{a}| \cdot |\underline{b}|}$$
 : $\underline{b} \cdot \underline{x} + d = 0$, $\underline{a} \cdot \underline{x} + c = 0$

$$\mathbf{a}^{\mathbf{2} \circ \mathbf{g_a} \mathbf{x}} = \mathbf{2} \circ \mathbf{g_a} (\mathbf{a^x}) = \mathbf{x}$$
 $\mathbf{2} \circ \mathbf{g_a} \mathbf{x} = \frac{\mathbf{2} \circ \mathbf{g_b} \mathbf{x}}{\mathbf{2} \circ \mathbf{g_b} \mathbf{a}}$ $\mathbf{2} \circ \mathbf{g_b} \mathbf{a}$ $\mathbf{2} \circ \mathbf{g_b} \mathbf{a}$ $\mathbf{2} \circ \mathbf{g_b} \mathbf{a}$ $\mathbf{2} \circ \mathbf{g_b} \mathbf{a}$ $\mathbf{2} \circ \mathbf{g_b} \mathbf{a}$

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$
 $\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$

$$tg(\alpha\pm\beta) = \frac{tg\alpha\pm tg\beta}{1\mp tg\alpha\,tg\beta} \qquad tg\,\frac{\alpha}{2} = \frac{\sin\alpha}{1+\cos\alpha}$$

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}} \qquad \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$\sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \qquad \cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$$

$$\sin\alpha - \sin\beta = 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \cos\frac{\alpha-\beta}{2}$$

$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

$$\sin\alpha - \sin\beta = 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2}$$

$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$
 משפט הסינוס:
$$\frac{a}{\sin\alpha} = 2R$$
 משפט הסינוס:

$$c^2=a^2+b^2-2ab\cos\gamma$$
 משפט הקוסינוס: $\sin\alpha=2R$ משפט הקוסינוס: $\sin\alpha=2R$ משפט הקוסינוס: $\sin\alpha=2R$ אורך קשת של $\alpha=2R$ שטח גורה: $\alpha=2R$ אורך קשת של $\alpha=2R$ אורך קשת של $\alpha=2R$ מורך קשת של $\alpha=2R$ אורך קשת של $\alpha=2R$ משפט הקוסינוס: $\alpha=2R$

חנדסת חמרחב $V = \frac{4}{3}\pi R^3$

$$V=rac{4}{3}\pi R^3$$
 נפח חרוט ופירמידה (B - שטח הבסיס): $V=rac{B\cdot h}{3}$ נפח חרוט ופירמידה (B - B) נפח חרוט ופירמידה שטח מעטפת חרוט: $M=\pi R \Omega$

אנליזת (חשבון דיפרנציאלי ואינטגרלי)

$$(uv)' = u'v + uv' \qquad (x^n)' = nx^{n-1} \qquad \sin'x = \cos x \qquad \text{arc } \sin'x = \frac{\frac{nnnn}{1}}{\sqrt{1-x^2}}$$

$$\left(\frac{u}{v}\right)' = \frac{vu' - v'u}{v^2} \qquad (a^x)' = a^x 2na \qquad \cos'x = -\sin x \qquad \text{arc } \cos'x = \frac{-1}{\sqrt{1-x^2}}$$

$$2\log_a'x = \frac{1}{x^2na} \qquad tg'x = \frac{1}{\cos^2x} \qquad \text{arc } tg'x = \frac{1}{1+x^2}$$

$$f'(x) = v'(u) \cdot u'(x) \qquad :$$

$$\log_a' x = \frac{1}{x \ln a}$$
 $tg'x = \frac{1}{\cos^2 x}$ $arc tg'x = \frac{1}{1+x^2}$

$$f'(x) = v'(u) \cdot u'(x)$$
 כלל השרשרת:

$$\int f(ax+b) \ dx = rac{1}{a} \ F(ax+b) + C$$
 בינטגרלים $\int_a^b f(x) \ dx = rac{h}{2} \left[\ f(a) + 2f(x_1) + \ldots + 2f(x_{n-1}) + f(b)
ight]$ בונקציות בונקציות $f(-x) = -f(x)$ בונקציה אי־זוגית: $f(x) = f(-x)$ בונקציה אירוגית: $f(x) = f(x)$ בינקציה מעבר בין קמירות לקעירות פונקציה קמורה:

סטטיסטיקה וחסתברות

לוח של התפלגות נורמלית (0,1) מצטברת

			•		,					,
u	0	11	2	3	4	5	6	7	8	9
0.0	0.500	504	508	512	516	520	524	528	532	536
0.1	0.540	544	548	552	556	560	564	568	571	575
0.2	0.579	583	587	591	595	599	603	606	610	614
0.3	0.618	622	625	629	633	637	641	644	648	652
0.4	0.655	659	663	666	670	674	677	681	684	688
0.5	0.692	695	699	702	705	709	712	716	719	722
0.6	0.726	729	732	736	739	742	745	749	752	755
0.7	0.758	761	764	767	770	773	776	779	782	787
0.8	0.788	791	794	797	800	802	805	809	811	813
0.9	0.816	819	821	824	826	829	832	834	837	839
1.0	0.841	844	846	848	851	853	855	858	860	862
1.1	0.864	866	869	871	873	875	877	879	881	883
1.2	0.885	887	889	891	893	894	896	898	900	902
1.3	0.903	905	907	908	910	911	913	915	916	918
1.4	0.919	921	922	924	925	926	928	929	931	932
1.5	0.933	935	936	937	938	939	941	942	943	944
1.6	0.945	946	947	948	9495	9505	9515	9525	9535	9545
1.7	0.9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1.8	0.9641	9650	9656	9664	9671	9678	9686	9693	9699	9706
1.9	0.9713	9719	9726	9732	9738	9744	9750	9756	9762	9767
2.0	0.9773	9778	9783	9788	9793	9798	9803	9808	9812	9817
2.1	0.9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2.2	0.9861	9865	9868	9871	9875	9878	9881	9884	9887	9890
2.3	0.9893	9896	9898	9901	9904	9906	9909	9911	9913	9916
2.4	0.9918	9920	9922	9925	9927	9929	9931	9932	9934	9936
2.5	0.9938	9940	9941	9943	9945	9946	9948	9949	9951	9952
2.6	0.9954	9955	9956	9957	9959	9960	9961	9962	9963	9964
2.7	0.9965	9966	9967	9968	9969	9970	9971	9972	9973	9974
2.8	0.9974	9975	9976	9977	9977	9978	9979	9979	9980	9981
2.9	0.9981	9982	9983	9983	9984	9984	9985	9985	9986	9986
3.0	0.9987	9987	9987	9988	9988	9989	9989	9989	9990	9990

חנדסח אנליטית

$$y - y_1 = m (x - x_1)$$
 : m משוואת ישר דרך (x_1, y_1) ששיפועו

$$tg\alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| : y = m_2 x + n_2$$
, $y = m_1 x + n_1$ נוסחה לזווית α שבין הישרים α בין הישרים α יישרים α ביץ בין הישרים α בין הישרים α ביץ בין הישרים α בין היים α בין הישרים α בין הישרים בין הישרים α בין הישרים בין

$$m_1 \cdot m_2 = -1$$
 : $y = m_2 x + n_2$, $y = m_1 x + n_1$ ניצבות הישרים

$$d = \pm \frac{Ax_o + By_o + C}{\sqrt{A^2 + B^2}}$$
 : Ax + By + C = 0 מהישר (x_o ; y_o) מהישר

$$\left(rac{2x_1+kx_2}{k+2} \; , \; rac{2y_1+ky_2}{k+2}
ight) \; : (\; A(x_1,y_1)\; ; \; B(x_2,y_2)\;)\; k\; : \; 2$$
 נקודה המחלקת את הקטע AB נקודה המחלקת את הקטע

$$(x_0; y_0)$$
 בנקודה (x - a)^2 + (y - b)^2 = R^2 משוואת המשיק למעגל

$$(x_o - a) \cdot (x - a) + (y_o - b) \cdot (y - b) = R^2$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 היפרבולה

$$y = \pm \frac{b}{a}x$$
 האסימפטוטות:

$$c = \sqrt{a^2 + b^2}$$
 מרחק המוקד מהראשית:

$$\frac{xx_o}{a^2} - \frac{yy_o}{b^2} = 1$$
 : $(x_o; y_o)$ משיק להיפרבולה בנקודה : $(x_o; y_o)$

$$n^2 = m^2 a^2 - b^2$$
 ישיק להיפרבולה: $y = mx + n$ ישיק להיפרבולה:

$$yy_o = p(x + x_o)$$
 נשיק לפרבולה בנקודה $(x_o; y_o)$: (x_o; y_o)

$$n=rac{p}{2m}$$
 ישיק לפרבולה: $y=mx+n$ התנאי שהישר