מדינת ישראל משרד החינוך

סוג הבחינה: א. בגרות לבתי״ס על־יסודיים ב. בגרות לנבחנים אקסטרניים

> מועד הבחינה: קיץ תשס״ז מספר השאלון: 035004, 304

דפי נוסחאות ל-4 ו-5 יח״ל נספח:

מתמטיקה

שאלון די הוראות לנבחן

א. משך הבחינה: שעה ושלושה רבעים.

ב. מבנה השאלון ומפתח ההערכה: בשאלון זה שני פרקים.

פרק ראשון: טריגונומטריה במישור ובמרחב, חשבון דיפרנציאלי ואינטגרלי של הפונקציות הטריגונַומטריותַ –

נקי $33\frac{1}{3} - 33\frac{1}{3} \times 1$

פרק שני: חזקות ולוגריתמים, חשבון דיפרנציאלי ואינטגרלי

נקי $66\frac{2}{2}$ σ סהייכ $\overline{}$

חומר עזר מותר בשימוש:

1. מחשבון לא גרפי. אין להשתמש באפשרויות התכנות במחשבון הניתן לתכנות. שימוש במחשבון גרפי או באפשרויות התכנות במחשבון עלול לגרום לפסילת הבחינה.

2. דפי נוסחאות (מצורפים).

ד. הוראות מיוחדות:

- 1. אל תעתיק את השאלה; סמן את מספרה בלבד.
- 2. התחל כל שאלה בעמוד חדש. רשום במחברת את שלבי הפתרון, גם כאשר החישובים מתבצעים בעזרת מחשבון. הסבר את כל פעולותיך, כולל חישובים, בפירוט ובצורה ברורה ומסודרת. חוסר פירוט עלול לגרום לפגיעה בציון או לפסילת הבחינה.
- 3. לטיוטה יש להשתמש במחברת הבחינה או בדפים שקיבלת מהמשגיחים. שימוש בטיוטה אחרת עלול לגרום לפסילת הבחינה.

دولة إسرائيل

وزارة المعارف نوع الامتحان: أ. بجروت للمدارس الثانوية ب. بجروت للممتحنين الخارجيين

موعد الامتحان: صيف ٢٠٠٧

رقم النموذج: ٣٠٤،٠٣٥،٠٤

لوائح قوانين لـ ٤ و ٥ وحدات تعليمية

الرياضيات النموذج "د" تعليمات للممتحن

مدّة الامتحان: ساعة وثلاثة أرباع.

ب. مبنى النموذج وتوزيع الدرجات: في هذا النموذج فصلان. الفصل الأوّل: حساب المثلثات في المستوى وفي الفراغ، حساب التفاضل والتكامل للدوال المثلثية

الفصل الثاني: الأسس واللوغريثمات، حساب التفاضل والتكامل $17 \times \frac{1}{\pi} = 77 \times \frac{1}{\pi}$ درجة المجموع – $100 \times 100 \times 100$

ج. موادّ مساعدة يُسمح استعمالها:

١. حاسبة غير بيانية. لا يُسمح استعمال إمكانيات البرمجة في الحاسبة التي يمكن برمجتها. استعمال الحاسبة البيانية أو إمكانيات البرمجة في الحاسبة قد يؤدّي إلى إلغاء الامتحان.

٢. لوائح قوانين (مرفقة).

د. تعليمات خاصّة:

١. لا تنسخ السؤال؛ اكتب رقمه

٢. ابدأ كلّ سؤال في صفحة جديدة. اكتب في الدفتر مراحل الحل، حتّى إذا أجريتَ حساباتك بواسطة حاسبة.

فسر كلّ خطواتك، بما في ذلك الحسابات، بالتفصيل وبوضوح وبترتيب.

عدم التفصيل قد يؤدّي إلى خصم درجات أو إلى إلغاء الامتحان.

٣. لكتابة مسوّدة يجب استعمال دفتر الامتحان أو الأوراق التي حصلتَ عليها من المراقبين. استعمال مسوّدة أخرى قد يؤدّي إلى إلغاء

التعليمات في هذا النموذج مكتوبة بصيغة المذكّر وموجّهة للممتحنات وللممتحنين على حدّ سواء. $\mathbf{z} \in \mathbf{n}$ لل \mathbf{n} النجاح!

الأسئلة

انتبه! فسر كلّ خطواتك، بما في ذلك الحسابات، بالتفصيل وبوضوح. عدم التفصيل قد يؤدّي إلى خصم درجات أو إلى إلغاء الامتحان.

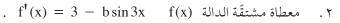
الفصل الأوّل: حساب المثلثات في المستوى وفي الفراغ، حساب التفاضل والتكامل للدوال المثلثية (٣٣٠ درجة)

أجب عن أحد السؤالين ١-٢.

انتبه! إذا أجبتَ عن أكثر من سؤال واحد، تُفحص فقط الإجابة الأولى التي في دفترك.

AD هو المستقيم المتوسّط للضلع القائم BC (انظر الرسم).

. BC = 2a ، ∢ABC = 73° : معطى أنّ


أ. احسب مقدار الزاوية ADC .

ب. E هي نقطة على امتداد المستقيم المتوسّط AD

. DE = مم E = 0 بحیث 10 سم E = 0

احسب طول الضلع القائم BC .

في إجاباتك أبق رقمين بعد الفاصلة العشرية.

. $x = \frac{\pi}{6}$ في النقطة التي فيها مرّروا مستقيمًا يمسّ الرسم البياني للدالة f(x)

. $y=-3x+2\pi$ معادلة المماس هي

i. b جد قيمة البارامتر

ب. جد الدالة (f(x .

، $0 < x < \frac{\pi}{2}$ للنقاط القصوى للدالة f(x) في المجال x للنقاط القصوى للدالة و x

وحدّد نوع هذه النقاط القصوي.

/يتبع في صفحة 3/

الفصل الثانى: الأسس واللوغريثمات، حساب التفاضل والتكامل $(\frac{7}{4})$ 77 درجة)

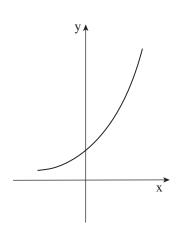
أجب عن اثنين من الأسئلة -0 (لكلّ سؤال $-\frac{1}{2}$ درجة).

انتبه! إذا أجبتَ عن أكثر من سؤالين، تُفحص فقط الإجابتان الأوليان اللتان في دفترك.

٣. في تاريخ 1/1/1990 اشترى شخص قطعة أرض في منطقة معدّة للبناء.

حتّى تاريخ 1/1/1994 انخفضت قيمة قطعة الأرض كلّ سنة بنسبة مئوية ثابتة.

في السنوات الـ 4 الأولى منذ يوم الشراء انخفضت قيمة قطعة الأرض بما مجموعه بنسبة 40%.


أ. جد النسبة المئوية الثابتة التي انخفضت بها قيمة قطعة الأرض كلّ سنة.

ب. في تاريخ 1/1/1994 تمّت المصادقة على خطط البناء في المنطقة. مع المصادقة ازدادت قيمة قطعة الأرض كلّ سنة بنسبة مئوية أكبر بِ 1.5 ضعف من النسبة المئوية التي انخفضت بها قيمة قطعة الأرض كلّ سنة قبل ذلك.

جد بعد مرور كم سنة منذ التاريخ 1/1/1994 ستكون قيمة قطعة الأرض أكبربِ %40 من قيمتها في يوم الشراء.

في إجاباتك دقّق حتّى رقمين بعد الفاصلة العشرية.

- . $f(x) = (\log_2 x)^2 \log_4 x^2$ عطاة الدالة . ٤
 - أ. ما هو مجال تعريف الدالة؟
 - ب. جد نقاط تقاطع الدالة مع المحور x .
- . $x=\sqrt{2}$ النقطة التي في الذي يمسّ الدالة في النقطة التي فيها جـ.

- . (انظر الرسم) $f(x)=rac{x+1}{e^2}$. معطاة الدالة . م ميل المستقيم الذي يمسّ الرسم البياني للدالة $rac{{
 m e}^2}{2}$ في النقطة $rac{{
 m e}^2}{2}$.
 - i. جد إحداثيات النقطة A.
- ب. جد معادلة المماس للرسم البياني للدالة في النقطة A.
- ج. احسب المساحة المحصورة بين الرسم البياني للدالة والمماس والمحور y .
 - بإمكانك إبقاء العدد e في إجاباتك.

בהצלחה!

נדמים לל וויجור!
זכות היוצרים שמורה למדינת ישראל.
אין להעתיק או לפרסם אלא ברשות משרד החינוך. حقوق الطبع محفوظة لدولة إسرائيل. النسخ أو النشر ممنوعان إلا بإذن من وزارة المعارف.

נוסחאון מתמטיקה

5-4 יחידות לימוד (חחל מקיץ תש"ן)

אלגברת

$$a^{n} - b^{n} = (a-b) (a^{n-1} + a^{n-2}b + ... + a^{n-3}b^{2} + ... + b^{n-1})$$

$$(a+b)^{n} = a^{n} + {n \choose 1} a^{n-1} \cdot b + ... + {n \choose k} a^{n-k} \cdot b^{k} + ... + b^{n}$$

פירוק לגורמים

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

$$x_1 + x_2 = -\frac{b}{a} \qquad \qquad x_1 \cdot x_2 = \frac{c}{a}$$

$$x_1 \cdot x_2 = \frac{c}{a}$$

נוסחאות וייטה

(
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 . שורשי משוואה ריבועית x_1, x_2)

סדרות

סדרה הנדסית	סדרה חשבונית	
$a_n = a_1 q^{n-1}$	$a_n = a_1 + (n - 1) d$: האיבר ה n-י
$S = \frac{a_1 (q^n - 1)}{a_1 (q^n - 1)}$	$S = \begin{bmatrix} n & (n-1) & d \end{bmatrix}$	
q-1	$S_n = \frac{n}{2} [2a_1 + (n-1) d]$	הסכום:

$$z = a + bi = r (\cos\theta + i \sin\theta)$$

מספרים מרוכבים

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$$

מכפלה בחצגה קוטבית:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

משפט דה־מואבר:

$$z_k = \sqrt[n]{r} \left[\cos \left(\frac{\alpha}{n} + \frac{2\pi k}{n} \right) + i \sin \left(\frac{\alpha}{n} + \frac{2\pi k}{n} \right) \right]$$
 הם: $z^n = r \left(\cos \alpha + i \sin \alpha \right)$ שורשי המשוואה

$$k = 0,1, \ldots, n - 1$$

קומבינטוריקה

$$p_n = n!$$

מספר התמורות של n עצמים (בלי חזרות):

מספר התמורות של n_1, n_2, \dots, n_k עצמים כשמתוכם עמים תווים ביניהם:

$$p_n = \frac{n!}{n_1! \cdot n_2! \dots \cdot n_k!}$$

$$A_n^k = \frac{n!}{(n-k)!}$$

מספר החליפות של k מתוך n עצמים (בלי חזרות):

$$\binom{n}{k} = C_n^k = \frac{n!}{k! (n-k)!}$$

מספר הצירופים של k מתוך n עצמים (בלי חזרות):

וקטורים

<u>זהויות</u>

$$\underline{x} = \underline{a} + t \ (\underline{b} - \underline{a}) + s(\underline{c} - \underline{a})$$
 : $\underline{c} = \overrightarrow{OC}$, $\underline{b} = \overrightarrow{OB}$, $\underline{a} = \overrightarrow{OA}$ מישור דרך קצות הווקטורים (\underline{x} , \underline{y}) = \underline{x} : $\underline{y} = x_1 y_1 + x_2 y_2 + x_3 y_3 = |\underline{x}| \cdot |\underline{y}| \cdot \cos \alpha$

$$\underline{x}$$
, $\underline{y} = \underline{x} \cdot \underline{y} = x_1 y_1 + x_2 y_2 + x_3 y_3 = |\underline{x}| \cdot \underline{y}| \cdot \cos x$

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$$
 ניצבות:
 $|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\mathbf{x}_1^2 + \mathbf{x}_2^2 + \mathbf{x}_3^2}$: אורך של וקטור

$$\frac{|\underline{a} \cdot \underline{z} + c|}{|\underline{a}|}$$
 : $\underline{a} \cdot \underline{x} + c = 0$ מרחק בין $\underline{z} = (z_1, z_2, z_3)$

$$\sin \beta = \frac{|\underline{a} \cdot \underline{b}|}{|\underline{a}| \cdot |\underline{b}|}$$
 : $\underline{a} \cdot \underline{x} + c = 0$ למישור למישור

$$\cos \alpha = \frac{|\underline{a} \cdot \underline{b}|}{|\underline{a}| \cdot |\underline{b}|}$$
 : $\underline{b} \cdot \underline{x} + d = 0$, $\underline{a} \cdot \underline{x} + c = 0$

$$\mathbf{a}^{\mathbf{2} \circ \mathbf{g_a} \mathbf{x}} = \mathbf{2} \circ \mathbf{g_a} (\mathbf{a^x}) = \mathbf{x}$$
 $\mathbf{2} \circ \mathbf{g_a} \mathbf{x} = \frac{\mathbf{2} \circ \mathbf{g_b} \mathbf{x}}{\mathbf{2} \circ \mathbf{g_b} \mathbf{a}}$ $\mathbf{2} \circ \mathbf{g_b} \mathbf{a}$ $\mathbf{2} \circ \mathbf{g_b} \mathbf{a}$ $\mathbf{2} \circ \mathbf{g_b} \mathbf{a}$ $\mathbf{2} \circ \mathbf{g_b} \mathbf{a}$ $\mathbf{2} \circ \mathbf{g_b} \mathbf{a}$

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$
 $\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$

$$tg(\alpha\pm\beta) = \frac{tg\alpha\pm tg\beta}{1\mp tg\alpha\,tg\beta} \qquad tg\,\frac{\alpha}{2} = \frac{\sin\alpha}{1+\cos\alpha}$$

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}} \qquad \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$\sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \qquad \cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$$

$$\sin\alpha - \sin\beta = 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \cos\frac{\alpha-\beta}{2}$$

$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

$$\sin\alpha - \sin\beta = 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2}$$

$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$$

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$
 משפט הסינוס:
$$\frac{a}{\sin\alpha} = 2R$$
 משפט הסינוס:

$$c^2=a^2+b^2-2ab\cos\gamma$$
 משפט הקוסינוס: $\sin\alpha=2R$ משפט הקוסינוס: $\sin\alpha=2R$ משפט הקוסינוס: $\sin\alpha=2R$ אורך קשת של $\alpha=2R$ שטח גורה: $\alpha=2R$ אורך קשת של $\alpha=2R$ אורך קשת של $\alpha=2R$ מורך קשת של $\alpha=2R$ אורך קשת של $\alpha=2R$ משפט הקוסינוס: $\alpha=2R$

חנדסת חמרחב $V = \frac{4}{3}\pi R^3$

$$V=rac{4}{3}\pi R^3$$
 נפח חרוט ופירמידה (B - שטח הבסיס): $V=rac{B\cdot h}{3}$ נפח חרוט ופירמידה (B - B) נפח חרוט ופירמידה שטח מעטפת חרוט: $M=\pi R \Omega$

אנליזת (חשבון דיפרנציאלי ואינטגרלי)

$$(uv)' = u'v + uv' \qquad (x^n)' = nx^{n-1} \qquad \sin'x = \cos x \qquad \text{arc } \sin'x = \frac{\frac{nnnn}{1}}{\sqrt{1-x^2}}$$

$$\left(\frac{u}{v}\right)' = \frac{vu' - v'u}{v^2} \qquad (a^x)' = a^x 2na \qquad \cos'x = -\sin x \qquad \text{arc } \cos'x = \frac{-1}{\sqrt{1-x^2}}$$

$$2\log_a'x = \frac{1}{x^2na} \qquad tg'x = \frac{1}{\cos^2x} \qquad \text{arc } tg'x = \frac{1}{1+x^2}$$

$$f'(x) = v'(u) \cdot u'(x) \qquad :$$

$$\log_a' x = \frac{1}{x \ln a}$$
 $tg'x = \frac{1}{\cos^2 x}$ $arc tg'x = \frac{1}{1+x^2}$

$$f'(x) = v'(u) \cdot u'(x)$$
 כלל השרשרת:

$$\int f(ax+b) \ dx = rac{1}{a} \ F(ax+b) + C$$
 בינטגרלים $\int_a^b f(x) \ dx = rac{h}{2} \left[\ f(a) + 2f(x_1) + \ldots + 2f(x_{n-1}) + f(b)
ight]$ בונקציות בונקציות $f(-x) = -f(x)$ בונקציה אי־זוגית: $f(x) = f(-x)$ בונקציה אירוגית: $f(x) = f(x)$ בינקציה מעבר בין קמירות לקעירות פונקציה קמורה:

סטטיסטיקה וחסתברות

לוח של התפלגות נורמלית (0,1) מצטברת

			•		,					,
u	0	11	2	3	4	5	6	7	8	9
0.0	0.500	504	508	512	516	520	524	528	532	536
0.1	0.540	544	548	552	556	560	564	568	571	575
0.2	0.579	583	587	591	595	599	603	606	610	614
0.3	0.618	622	625	629	633	637	641	644	648	652
0.4	0.655	659	663	666	670	674	677	681	684	688
0.5	0.692	695	699	702	705	709	712	716	719	722
0.6	0.726	729	732	736	739	742	745	749	752	755
0.7	0.758	761	764	767	770	773	776	779	782	787
0.8	0.788	791	794	797	800	802	805	809	811	813
0.9	0.816	819	821	824	826	829	832	834	837	839
1.0	0.841	844	846	848	851	853	855	858	860	862
1.1	0.864	866	869	871	873	875	877	879	881	883
1.2	0.885	887	889	891	893	894	896	898	900	902
1.3	0.903	905	907	908	910	911	913	915	916	918
1.4	0.919	921	922	924	925	926	928	929	931	932
1.5	0.933	935	936	937	938	939	941	942	943	944
1.6	0.945	946	947	948	9495	9505	9515	9525	9535	9545
1.7	0.9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1.8	0.9641	9650	9656	9664	9671	9678	9686	9693	9699	9706
1.9	0.9713	9719	9726	9732	9738	9744	9750	9756	9762	9767
2.0	0.9773	9778	9783	9788	9793	9798	9803	9808	9812	9817
2.1	0.9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2.2	0.9861	9865	9868	9871	9875	9878	9881	9884	9887	9890
2.3	0.9893	9896	9898	9901	9904	9906	9909	9911	9913	9916
2.4	0.9918	9920	9922	9925	9927	9929	9931	9932	9934	9936
2.5	0.9938	9940	9941	9943	9945	9946	9948	9949	9951	9952
2.6	0.9954	9955	9956	9957	9959	9960	9961	9962	9963	9964
2.7	0.9965	9966	9967	9968	9969	9970	9971	9972	9973	9974
2.8	0.9974	9975	9976	9977	9977	9978	9979	9979	9980	9981
2.9	0.9981	9982	9983	9983	9984	9984	9985	9985	9986	9986
3.0	0.9987	9987	9987	9988	9988	9989	9989	9989	9990	9990

חנדסח אנליטית

$$y - y_1 = m (x - x_1)$$
 : m משוואת ישר דרך (x_1, y_1) ששיפועו

$$tg\alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| : y = m_2 x + n_2$$
, $y = m_1 x + n_1$ נוסחה לזווית α שבין הישרים α בין הישרים α יישרים α ביץ בין הישרים α בין הישרים α ביץ בין הישרים α בין היים α בין הישרים α בין הישרים בין הישרים α בין הישרים בין

$$m_1 \cdot m_2 = -1$$
 : $y = m_2 x + n_2$, $y = m_1 x + n_1$ ניצבות הישרים

$$d = \pm \frac{Ax_o + By_o + C}{\sqrt{A^2 + B^2}}$$
 : Ax + By + C = 0 מהישר (x_o ; y_o) מהישר

$$\left(rac{2x_1+kx_2}{k+2} \; , \; rac{2y_1+ky_2}{k+2}
ight) \; : (\; A(x_1,y_1)\; ; \; B(x_2,y_2)\;)\; k\; : \; 2$$
 נקודה המחלקת את הקטע AB נקודה המחלקת את הקטע

$$(x_0; y_0)$$
 בנקודה (x - a)^2 + (y - b)^2 = R^2 משוואת המשיק למעגל

$$(x_o - a) \cdot (x - a) + (y_o - b) \cdot (y - b) = R^2$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 היפרבולה

$$y = \pm \frac{b}{a}x$$
 האסימפטוטות:

$$c = \sqrt{a^2 + b^2}$$
 מרחק המוקד מהראשית:

$$\frac{xx_o}{a^2} - \frac{yy_o}{b^2} = 1$$
 : $(x_o; y_o)$ משיק להיפרבולה בנקודה : $(x_o; y_o)$

$$n^2 = m^2 a^2 - b^2$$
 ישיק להיפרבולה: $y = mx + n$ ישיק להיפרבולה:

$$yy_o = p(x + x_o)$$
 נשיק לפרבולה בנקודה $(x_o; y_o)$: (x_o; y_o)

$$n=rac{p}{2m}$$
 ישיק לפרבולה: $y=mx+n$ התנאי שהישר