HOW DO EXPERIENCED TEACHERS IMPLEMENT MULTIPLE INTELLIGENCE (MI) PEDAGOGY IN THEIR CLASSES?

Rama Klavir and Itsik Koren

Introduction

After they have intensely learned the theory of Gardner, a group of 52 junior high and high school teachers, of at least 10 years of teaching experience, were asked to implement the MI pedagogy in their classrooms. Their lesson plans and their written reflections were analyzed. The present research deals with four questions: 1. to what extent are the teaching-learning activities chosen by the teachers based on MI? 2. To what extent is the choice of intelligences in the basis of the teaching activities of the teachers? 3. To what extent are the teaching-learning activities chosen by the teachers congruent with the teachers' self-perception of their MI intelligences? 4. To what extent are the teaching-learning activities chosen by the teachers congruent with the teachers' self-perception of their MI intelligences?
HOW DO EXPERIENCED TEACHERS IMPLEMENT MULTIPLE INTELLIGENCE (MI) PEDAGOGY IN THEIR CLASSES?

Rama Klavir and Itsik Koren

Introduction

After they have intensely learned the theory of Gardner, a group of 52 junior high and high school teachers, of at least 10 years of teaching experience, were asked to implement the MI pedagogy in their classrooms. Their lesson plans and their written reflections were analyzed. The present research deals with four questions: 1. to what extent are the teaching-learning activities chosen by the teachers based on MI? 2. To what extent is the choice of intelligences in the basis of the teaching activities connected to each of the three components of the pedagogical triangle: student, teacher and S-M-D? 3. What is the MI pedagogy implementation pattern performed by teachers during teaching? 4. Reflections: what do teachers think about their new experience?

The findings indicate a gap between thoughts and action. It seems we may conclude that the educational theory, referred to in the present research, is grasped as logical and promising, and seems to have a serious likelihood of motivating a pedagogical change in schools. However, its implementation stage, like that of other theories, has met with difficulties. In practice, even teachers who are aware of its importance, know its advantages and experienced its practice, still return to the old and the known. Their belief in the new is limited to the declarative level, and in most cases they do not allow themselves to separate practically from conventional pedagogy, even though they say that MI pedagogy provides them with answers for many of their pedagogical problems.

Gardner (1983) contrasts his MI Theory with the conventional concept of single general intelligence, as in the psychometric approach (IQ). As long as the idea of a single, general intelligence was the accepted concept in educational circles, a school's educational focus on verbal and logical-mathematical intelligences in pedagogical activities was justified. According to Gardner (1999), those are the main abilities included in traditional intelligence tests, and constitute the proper basis for serious academic teaching and learning. Now that the notion of MI has appeared on the educational horizon, Gardner hopes that: "...the monopoly of those who believe in a single general intelligence has come to an end" (Gardner, 1999, p. 203).
Although Gardner’s approach is severely criticized (e.g. Klein 1997), his ideas continue increasingly to infiltrate educational discourse, and have become one of the more common topics in that discourse (e.g. Silver et al., 2000; Traub, 1998).

The three components of pedagogy and their characterization in the new MI-based pedagogy

Armstrong (1996, p. 48–51) maintains that MI pedagogy resembles the way pedagogy was described by Dewey (1910). To summarize Dewey’s idea, (see also: Garrison, 1999) every reference to a pedagogical act should examine its three components: student, teacher and S-M-D (Subject-Matter-Domain). The character of those three components and the connections between them create a pedagogical triangle essential to the teacher’s work. As in Dewey’s approach, in the MI approach, in deciding how to teach specific subject-matter a teacher should emphasize the student vertex in the pedagogical triangle, his preferences and abilities. The S-M-D and teacher’s own pedagogical choice vertices in the same triangle must take them into account (Armstrong, 1996, p. 57).

The conditions for and implementation of MI pedagogy in the classroom

In order to implement MI pedagogy, a classroom should include an environment with diverse representations around it, as learning takes place through diverse teaching-learning activities. The literature describes several options of characteristics for such an environment (Armstrong, 1996; Koren, Klavir & Gorodetsky, 2005; Silver et al., 2000): MI-based activities should replace, or exist alongside, the traditional activities. Students should be exposed to diverse choices.

Conditions prerequisite for the implementation of MI pedagogies:

1. Full confidence in the new approach—Teachers should believe in the new approach, its importance and its ability to lead to more meaningful learning for their students. This is the first condition required for teachers to make a change in their classrooms (e.g. Dexter et al., 1999).

2. Abandoning the old—Teachers should abandon the practice of using solely traditional teaching-learning activities based only on the linguistic and the logical-mathematical intelligences [called by Gardner, 1999, ‘the school intelligence cluster’ (SI)]. They should give equal emphasis to learning through activities which fit the characteristics of all the intelligences, including the artistic (spatial, bodily-kinesthetic and musical intelligences) and the personality (interpersonal and intrapersonal intelligences) (Armstrong, 1996, pp. 65–85; Gardner, 1999).
3. **An intensive effort in implementation**—According to Armstrong (1996, p. 57), teachers who decide on adopting MI pedagogy need to put a special effort into the translation of the S-M-D from one intelligence to another.

The aim of the present study is to examine to what extent and in what ways experienced teachers (with firm pedagogical beliefs) implement MI pedagogy in junior high and high schools (educational frameworks with academic-achievement orientation).

Procedures and research questions

During a course for an Experienced Teacher’s Diploma, experienced teachers were taught Gardner’s theory and its possible applications. Learning in this unit included: reading, movies, discussions and internet websites. When the unit was summarized, teachers were asked to prepare a lesson plan or a teaching unit (5-8 successive lessons) in their field of expertise, while implementing the MI approach. In order to challenge the teachers, one subject was set for all lessons: distance. Thus, the subject of distance was the central axis of the lesson, whether a lesson in grammar, sociology or mathematics. Teachers were asked to present a written lesson plan and to write a personal reflection after having implemented the lesson in their classroom. Their lesson plans and comments were analyzed. The four research questions were:

1. To what extent are the teaching-learning activities chosen by the teachers based on MI?
2. To what extent is the choice of intelligences in the basis of the teaching activities connected to each of the three components of the pedagogical triangle: student, teacher and S-M-D?
3. What is the MI pedagogy implementation pattern performed by teachers during teaching?
4. Reflections: what do teachers think about their new experience?

Method

Subjects: 52 junior high and high school teachers, of at least 10 years of teaching experience, experts in their S-M-D of teaching.

Instruments:

A. Lesson plans prepared by the teachers for their teaching activity.
B. The teachers’ reflections after the actual implementation of the teaching plan.
Method of analysis: The lesson plans and the written reflections were analyzed and encoded by three different people: the paper's two writers and a research assistant. Encoding was based on preset variables. Criteria for analysis were found to be easy to apply and the interrater reliability was high (95%). The method of analysis was linked to the results analysis in regard to each research question.

Results

Question 1

The question was studied in two ways:

1.1 Comparative analysis between the seven intelligence frequencies:
Every teacher stated intelligence on which it was based next to every teaching-learning activity. Since every teacher chose which, and on how many of the seven intelligences, he chose to base the activity, the usage frequency of the different intelligences was examined statistically (see table 1).

1.2 Comparative analysis between the average scores of the three clusters:
The intelligences were sorted into three clusters (according to Gardner, 1999): The school intelligences cluster (SI) - Linguistic and Logical-mathematical intelligences. The artistic intelligences cluster (AI) - spatial, bodily-kinesthetic and musical intelligences. The personality intelligences cluster (PI) - interpersonal and intrapersonal intelligences.

The average score of each cluster was calculated in the following way:

a. Each one of the intelligences was given a score of either 0 (not chosen) or 1 (chosen).
b. In each cluster the sum of scores was calculated and divided by the number of intelligences in the cluster. In the clusters of SI and PI the sum was divided by 2 and in the AI’s cluster it was divided by 3. Thus an average score for any cluster could be anywhere from 0 to 1.

The statistical differences between the average scores of the three clusters were analyzed (see Table 1).

Results:

1.1 Comparative analysis between the seven intelligences frequencies:

Friedman non-parametric test for several dependent samples (since each teacher could choose more than one intelligence) was conducted for table 1 in order to find whether there are differences in the frequency of choosing the different intelligences.
Table 1. The frequencies of the seven intelligences in the teaching-learning activities chosen by teachers for their classes.

<table>
<thead>
<tr>
<th>From most used down</th>
<th>Intelligence sort</th>
<th>Used (out of n=52)</th>
<th>Did not use (out of n=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>linguistic</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>spatial</td>
<td>39</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>musical</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>bodily-kinesthetic</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>logical-mathematical</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>interpersonal</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>intrapersonal</td>
<td>18</td>
<td>34</td>
</tr>
</tbody>
</table>

Analysis reveals a significant difference between the intelligences ($X^2=40.1$, d.f. =6, p=0.00): When taught the idea of the new MI pedagogy and given the chance, teachers made efforts to use all the intelligences. Nevertheless, as in traditional teaching, the linguistic intelligence was most frequently chosen (81% of the teachers). The two personality intelligences were less frequently chosen.

1.2 Comparative analysis between the average scores of the three clusters:

A Friedman non-parametric test for several dependent samples (since each teacher could have chosen more than one intelligence, and intelligences from more than one cluster) was conducted in order to see if there is a significant difference between the average scores of the different intelligence clusters.

![Figure 1. The average teachers' choosing grade in each intelligence cluster.](image_url)
It was found that there is a significant difference between the intelligence clusters ($\chi^2 = 14.6$, d.f. = 2, p = 0.01), see Figure 1. Teachers chose the SI and the AI clusters more than the PI cluster.

Question 2

The question was divided into two sub-questions, 2.1 and 2.2, as follow:

2.1 To what extent is choosing the intelligence for the basis of the teaching-learning activity connected with the preference of the student or the teacher?

The results are based on two kinds of analysis:

2.11 While analyzing the written lesson plans the question was: Did the teachers check for the dominant intelligences and/or profile of intelligences of their students prior to the planning of the teaching-learning activity? They might have used questionnaires or conducted an open discussion with the students. The existence of such an inquiry prior to lesson planning would indicate if the teachers emphasize their students’ preferences when planning a lesson.

Results:

Analysis of the written lesson plans revealed that no inquiry of any sort was made regarding students’ preferences prior to the teachers’ choices of teaching-learning activity.

2.12 The content of the lesson plan itself was analyzed to see how much each plan considers student preferences. In order to do that, the lesson plans were sorted according to three categories: (1) **The teacher in the center:** The teacher chooses the intelligence with which every student will work and builds the activity planned for each intelligence. (2) **The teacher in the center with secondary choice for the student:** planning is based on the teacher’s preference for a kind of intelligence and on the student choice of the activity type within this intelligence. (3) **The student in the center:** allowing for the student to express his preferences for both the intelligence and the activity type.

Results:

In a χ^2 non-parametric test for a single sample (graph 2), a significant difference was found between the three categories ($\chi^2 = 22.7$, d.f. = 2, p = 0.00).
The results indicate that: A. the number of teachers who chose to plan their lessons while giving expression to their own favorite intelligences and activities (category 1) is three times larger than the number of teachers who chose to plan their lessons while allowing the students to choose their own intelligences and activities (category 3). B. The largest number of cases is in category 2, in which the teachers chose the intelligences and the students were given some freedom to express their preference.

2.2 How much is choosing the intelligences of the teaching-learning activity connected with S-M-Ds?

A general linear model was used: the dependent variable: the average grade of the three intelligences clusters; the independent variable: the nine S-M-Ds of the teachers in the current activity (see table 2).
Table 2. The average grade of each of the clusters according to the teaching-learning subject matter domain.

<table>
<thead>
<tr>
<th></th>
<th>Number of teachers (n)</th>
<th>The school intelligences cluster</th>
<th>The artistic intelligences cluster</th>
<th>The personality intelligences cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Civics</td>
<td>7</td>
<td>0.64* (0.24)**</td>
<td>0.62 (0.36)</td>
<td>0.57 (0.45)</td>
</tr>
<tr>
<td>2. Hebrew</td>
<td>7</td>
<td>0.70 (0.27)</td>
<td>0.57 (0.37)</td>
<td>0.21 (0.39)</td>
</tr>
<tr>
<td>3. Literature</td>
<td>12</td>
<td>0.71 (0.33)</td>
<td>0.58 (0.35)</td>
<td>0.25 (0.40)</td>
</tr>
<tr>
<td>4. English (foreign language)</td>
<td>5</td>
<td>0.80 (0.27)</td>
<td>0.60 (0.28)</td>
<td>0.60 (0.42)</td>
</tr>
<tr>
<td>5. Bible</td>
<td>2</td>
<td>0.50 (0.00)</td>
<td>0.33 (0.00)</td>
<td>1.00 (0.00)</td>
</tr>
<tr>
<td>6. Geometry</td>
<td>3</td>
<td>1.00 (0.00)</td>
<td>1.00 (0.00)</td>
<td>0.67 (0.29)</td>
</tr>
<tr>
<td>7. History</td>
<td>8</td>
<td>0.44 (0.42)</td>
<td>0.50 (0.36)</td>
<td>0.38 (0.44)</td>
</tr>
<tr>
<td>8. Geography</td>
<td>3</td>
<td>0.83 (0.29)</td>
<td>0.67 (0.33)</td>
<td>0.17 (0.29)</td>
</tr>
<tr>
<td>9. Social sciences</td>
<td>5</td>
<td>0.30 (0.27)</td>
<td>0.80 (0.18)</td>
<td>0.20 (0.27)</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>0.64 (0.33)</td>
<td>0.62 (0.33)</td>
<td>0.38 (0.42)</td>
</tr>
</tbody>
</table>

*average mean between 0 and 1. **Standard deviation (s. d.)

The results show a significant main effect of S-M-D $(F(8,51)=2.24$, $p=0.04$) only on the cluster of school-intelligences. These results indicate that S-M-Ds influence teachers’ decisions regarding preferred clusters of intelligences on which they base their pedagogical activities. In certain S-M-Ds teachers tend to base their pedagogical activities on school intelligences more than in the two other clusters. Thus, while in S-M-Ds such as civics, Hebrew, literature, geometry, geography and English as a foreign language, the school intelligences cluster was chosen primarily, in others (Bible, history and social sciences) teachers allow themselves to use other clusters (artistic and personality) as well.

Question 3

Lesson plans were analyzed in order to test whether the MI pedagogy adoption was genuine and given a central place in learning, or was referred to as an extra, amusing, but inessential addition. In order to understand the implementation pattern, lesson plans were sorted into four categories as follow:

1. **MI pedagogy is not adopted as an alternative pedagogy**: The teaching-learning process continues in a conventional way without assimilating the MI pedagogy.
2. **MI pedagogy is adopted as an extra pedagogy, activated as ‘special effects’ only after the implementation of a conventional pedagogical**: The teaching-learning process continues in a conventional way. When the main activity is over, the MI pedagogy is implemented as an entertaining diversion.
3. **MI pedagogy is adopted as part of the pedagogical activity, combined with con-
Conventional pedagogy: MI pedagogy is used as a way of learning complementary to conventional learning. [4] **MI pedagogy is adopted as the alternative teaching-learning pedagogy:** MI pedagogy takes the place of conventional learning.

Results:

The distribution of the four MI pedagogy implementation patterns is presented in Graph 3. In a X^2 non-parametric test for a single sample, a significant difference was found between the frequency of the four patterns ($X^2=32.0$, d.f.=3, $p=0.00$).

![Graph 3](image)

Figure 3. The frequency of the four MI pedagogy implementation patterns.

The results indicate that while only 2% of all the teachers in the sample did not adopt the new MI pedagogy at all, 56% of the teachers chose MI pedagogy only as a secondary, entertaining, ‘special effects’ type of activity (category 2). They did not give it a central role in the teaching-learning process itself; it was used as an amusing extra exercise only after the conventional learning was completed.

Question 4

Question 4 was divided into two sub questions, 4.1 and 4.2:

4.1 After the experience—to what extent does the teacher believe it is important to keep using the new pedagogy?

Teachers’ comments were grouped in three categories:

[1] It is highly recommended to continue to implement the new pedagogy.

[2] It would be important to continue to implement the new pedagogy, were it not so complicated.

Results:
The distribution of the three categories of comments on the importance of the implementation of the MI pedagogy is presented in graph 4. In a X^2 non-parametric test for a single sample. A significant difference was found between the frequency of the three categories ($X^2=36.1$, d.f.=2, $p=0.00$).

![Graph showing the distribution of comments](image)

Figure 4. The frequency of the three reflection categories of teachers about the importance of adoption and implementing the new pedagogy

The results indicate that 84% of the responders believe it is important to continue implementation of the new pedagogy (category 1). Only one responder (3%) holds that the new pedagogy should not be implemented (category 3).

4.2 What are the reasons for adopting the new pedagogy, according to teachers’ comments?

Thirty-one of the 52 teachers of category 1 in question 4.1, referred in their comments to the importance of the implementation of MI pedagogy. Their answers were analyzed in reference to the three factors in the pedagogical triangle in the following way:

[1] Student: Every response which attributes the importance of adopting the new pedagogy to student-related reasons was placed in this category. [2] Teacher: Every response which attributes the importance of adopting the new pedagogy to teacher-related reasons was placed in this category. [3] Subject-matter domain (S-M-D): Every response which attributes the importance of adopting the new pedagogy to S-M-D related reasons was placed in this category.
Results:
The distribution of the three categories of reasons for the importance of the implementation of the MI pedagogy is presented in graph 5. In a X^2 non-parametric test for a single sample, a significant difference was found between the frequency of the three categories ($X^2=29.6$, d.f.=2, $p=0.00$).

Most of the reasons given by the teachers (68%) refer to MI pedagogy’s benefits for the student. 22% of the responses refer to MI pedagogy’s benefits for the teachers themselves. Only 10% of the teachers see MI pedagogy as having the potential to influence the teaching and understanding of the subject matter domain.

Discussion

This study investigated the way in which experienced teachers implement MI pedagogy in their classes. The participants in the research were a group of senior teachers in junior high and in high schools who were experiencing the implementation of MI pedagogy in their classes for the first time.

The assumption was that MI pedagogy, which appears more and more in educational discourse, would be convincing, as it is both promising and diverse. It was assumed that even in high schools, where the insertion of pedagogical reforms is usually harder (Kasti et al., 2001; Osin & Lesgold, 1996), the MI approach might have a good chance of being adopted by teachers. We also believed that even though a teacher’s seniority might inhibit the willingness to believe and change concepts needed for the adoption of pedagogical changes (Desimone et al., 2005), sometimes the experience and knowledge acquired during the years, could be advantageous in moving to new teaching methods which appear logical and fit students’ needs. We believed that in this experiment as well, the MI pedagogy concept had a good chance of being accepted, since the teachers in the experimental group would be able to apply their rich pedagogical experience in reaching professional decisions, enabling them to test the advantages of the proposed pedagogy in light of their difficulties with conventional pedagogies.

Indeed, teachers made an effort to use all seven intelligences in planning their lessons, a finding which indicates their interest in the new pedagogy. Nevertheless, even in the current experience, they focused mostly on verbal intelligence, which enjoyed predominant use. It’s possible that the teachers were still attached to methods derived from the traditional psychometric approach. The result is a classical description of the introduction of pedagogical changes, as described in other studies (Kasti et al., 2001; Osin & Lesgold, 1996): The teachers “adopt” the new idea and implement it but rapidly return to the familiar and favorite, verbal intelligence. The current finding affirms the teachers’ difficulty, as described in the literature, of internalizing pedagogical change—in our case, the MI theory with its different applications. The two intelligences in the personality cluster seldom appeared in the lesson plans. Those intelligences are considered very important in the learning process, when learning is perceived as “knowledge construction,” according to the
constructive approach, and as irrelevant in “acquiring knowledge,” according to the traditional approach to teaching and learning (Brooks & Brooks, 1997, pp 101–118).

Another point, stressing the lack of internalization of MI as a possible alternative pedagogy, arises from the analysis of the significance to the teacher of each of the components of the pedagogical triangle while choosing the teaching-learning activity in class. As mentioned, the pedagogical triangle includes the student, teacher and subject matter domain. According to Dewey (1910) and MI conception (Armstrong, 1996) good teachers give a major emphasis to the ‘student’ component while the other two components should be adjusted to the students’ special needs, tendencies and abilities. According to the present article, the situation is completely different. Even when teachers prepare their lessons in the spirit of MI, the preparation is more affected by the teachers’ tendencies and the “demands” of ‘subject-matter domain’ components than by the student. Student’s abilities and preferences are only secondary in determining the teaching-learning activities and in choosing the intelligences on which those activities will be based. The results of research question 2.1 show that the teachers did not inquire as to the students’ preferences. It was also found that the number of teachers choosing to plan their lessons while preferring their own intelligences and activities (category 3), was six times larger than the number of teachers planning activities in which the students have a choice of their preferred intelligences and activities (category 1). The subject matter domain was found to have a significant influence on the choice of intelligences as a basis for teaching-learning activities. The results of question 2.2 show that in certain areas, planning is still based on the school intelligences cluster. It might reflect the relative importance of these S-M-Ds (for the discussion about the differential level of importance of success in different S-M-Ds in Israel, see: Eilon, 2000; Mei-Ami, 2005). In those prestigious S-M-Ds (Hebrew grammar, English as a foreign language, geometry, geography and literature) the teachers have to prove success and thus fear risk-taking and “playing” with new pedagogies. Planning educational activities in less dominant S-M-Ds such as: Bible, history and social-sciences did include the artistic and personality intelligences clusters. The status of those subject matter domains in schools seems to be secondary. Therefore, teachers allow themselves more flexibility in deviating from conventional teaching methods.

It is interesting to see how the results of the third research question support the above-mentioned point, but from a different perspective. It was found that while only 2% of the teachers did not adopt the new pedagogy at all, and even chose conventional pedagogy in planning their experiment-connected lesson plan, most of the teachers (56%) used the new pedagogy as special effects entertainment (category 2). This meant that it does not have a central role during class, but can be an amusing and fun way for providing students with extra practice.

Dealing with pedagogical thinking in school, Gardner (1996, p. 82–86) hopes that the MI approach will lead to a change in everyday pedagogical thinking in schools, and that a real school reform could be achieved. Adopting his idea neces-
sittates a major and fundamental change of the common paradigm. As was mentioned above, teachers have to believe in a new pedagogy in order to abandon the old ones. They have to be able to observe the changes which the new method would cause (Bateson, 1979, p. 110). The assignment given to the teachers was designed for them to experience such changes. The results of the third research question indicate that most of the teachers (98%) did accept the challenge of dealing with the new pedagogy. They invested efforts in finding ways of implementing it in their own S-M-Ds, and tried to aim the activities in the new direction. Nonetheless, examining the implementation pattern of the new pedagogy shows that the change they made in the nature and manner of the lesson was minor.

In contrast with the results to this point, and although the teachers’ performances indicate internal conflict, the results of research question 4.1 show that most of the teachers (84%) do adopt the idea as the basis of a new perception, and recommend its continued use. But a gap does appear when comparing the teacher’s attitudes as reflected by their comments (see the above results for research question 4.2) with their actual performance, and involves the place of the student in planning MI pedagogy. As the analysis of the second research question shows, while implementing the new pedagogy in planning the teaching-learning activity, teachers place more weight on teacher and S-M-D components and much less on the student component. Their comments, on the other hand, show that when they consider continued implementation of MI pedagogy, they see great importance in the student component and less importance in the teacher and subject matter domain components. In 68% of the teachers’ comments, they attribute the importance of the MI approach to what students with different intelligence profiles could gain from it. Only 22% of the teachers attribute the new approach’s advantages to the teacher component, feeling that it could improve them professionally by challenging them and diversifying their work. Finally, while giving great importance to the S-M-D in deciding on the nature of the teaching-learning activities with the included intelligences (see above results of research question 2.2), the same component is hardly referred to in teachers’ comments. Only 10% of the teachers refer in their comments to the connection between the MI pedagogy and its possible contribution to deepening the understanding of the subject matter domain; to increasing the domain’s relevancy, enriching or widening it.

The gap between the teachers’ acknowledgement of the possible contribution of a certain pedagogical reform, and the extent of its actual implementation, as appears in the present research, characterizes many educational reforms, mainly in junior high schools. One could claim that the substantial gap documented in the present research stems from the change being viewed as a short-term event activity by the teachers. A longer term study might have produce different results. Yet other researchers (e.g. Kapulnik, 2005) found that even when the teacher’s experience with the changes is prolonged, and even when their experience was closely tutored for three years’ time and more, there was still a gap between teachers’ statements regarding the and their actual performance. Similar findings were found in estimation research, conducted in four junior high schools in Israel by Kashti et
al. (2001), and also in similar studies in other places around the world, in the context of pedagogical reforms of sorts (e.g., Osin & Lesgold, 1996), including reforms dealing with the implementation of Gardner’s MI approach (Traub, 1998).

In sum, if we return to the three conditions for the implementation of the new MI pedagogy stated in the introduction: 1. believing in the new, 2. abandoning the old, 3. a directed effort in the process of implementation, we may conclude that the present research gives an example of an educational theory, grasped as logical and promising, and seems to have a serious likelihood of motivating a pedagogical change in schools. Nonetheless, its implementation stage, like that of other theories, was met with difficulties. In practice, even teachers who are aware of its importance, know its advantages and experienced its practice, still return to the old and the known. This shows that, 1. Teachers’ belief in the new is limited to the declarative level. 2. In most cases they do not allow themselves to separate practically from conventional pedagogy, even though they say that MI pedagogy supplies answers for students with diverse preferences and abilities. 3. The directed effort by teachers to implement the new pedagogy is done out of the intention of making a true pedagogical change.

Reference

